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Abstract-The transient heat transfer in forced convection for simultaneously developing laminar flow 
inside a parallel-plate channel is studied by solving the steady momentum equation with the generalized 
integral transform technique and the transient energy equation through a hybrid approach that combines 
the integral transform method with a second-order accurate finite-differences scheme. Semi-analytical 
results are then presented for the fluid bulk temperature and local Nusselt number along the channel as a 

function of position and time. 

1. INTRODUCTION 

HEAT transfer is hydrodynamically and thermally 
developing forced convection inside ducts is of great 
interest in heat-exchanger design, as documented in 
the vast literature survey compiled by Shah and 
London [l] and Shah and Bhatti [2]. 

In the earlier solution of such problems [3-51, the 
linearization procedure developed by Langhaar [6] 
and Sparrow et al. [7] was used in order to obtain 
approximate but explicit expressions for the velocity 
components. The energy equation was then numeri- 
cally solved for the temperature distribution with 
finite-differences, after neglecting the radial con- 
vection term. 

Recently, a similar approach has been followed [8], 
but the energy equation was solved with the gen- 
eralized integral transform technique, and the influ- 
ence of the radial convection was investigated. 

Carvalho et al. [9] solved the entrance region velocity 
problem with the generalized integral transform tech- 
nique by making a boundary layer approximation for 
the flow field. Cotta [lo] solved the entrance-region 
heat transfer problem with the generalized integral 
transform technique by using the velocity profile 
developed in ref. [9]. 

Other simultaneously developing steady-state solu- 
tions of thermal entrance problems include the use of 
finite-differences [ 1 l-l 31, the integral method [ 141 and 
an approximate analytical solution [ 151. 

All of the aforementioned works deal with the 
steady situation. For transient forced convection in 
ducts, several investigations have been conducted [ 16 

t Author to whom correspondence should be addressed. 

201 for hydrodynamically developed but thermally 
developing flow while, in the case of simultaneously 
developing transient forced convection, the literature 
is scarce. Recently, Schutte et al. [17] investigated 
numerically the transients resulting from a step change 
in the wall heat flux. To the knowledge of the authors, 
no solution appears to be available for the sim- 
ultaneously developing transient thermal entry prob- 
lem resulting from a variation of the duct inlet tem- 
perature. 

In this work, we intend to fill this gap in the litera- 
ture by presenting a solution for the case of sim- 
ultaneously developing transient forced convection 
resulting from a step change in inlet temperature. 

2. MATHEMATICAL FORMULATION 

We consider a developing, steady-state, laminar 
flow of a Newtonian fluid inside a parallel-plate duct. 
The static pressure is assumed uniform across the 
cross section, and the axial shear component is neg- 
ligible relative to the transverse shear component. At 
time t = 0, the inlet temperature undergoes a step 
change, while a constant temperature is maintained at 
the duct wall. The continuity and momentum equa- 
tions of developing steady flow are given in the dimen- 
sionless form as 

au@, Z) + a W, Z) 
az ---==O O<R<l,Z>O (la) 

aR 

sum, .a 
UK Z) --j-y-- 

aw4 3 
+ W, Z) a~ 

0< Rc l,Z>O. (lb) 
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NOMENCLATURE 

Dh hydraulic diameter of parallel-plate 

M, norm of problem (18) 

N, norm of problem (10) 
N truncation order 
Nu(Z) local Nusselt number 
P, P* static pressure (dimensional and 

dimensionless) 
Pr Prandtl number 
Pe Peclet number 
Re Reynolds number 
I‘. R normal coordinate (dimensmnal and 

dimensionless) 

r, half the spacing between parallel 
plates 

T(r, z) temperature distribution 
(dimensional) 

T, uniform inlet temperature 

T, prescribed wall temperature 
u(r, z), U(R, Z) axial velocity components 

(dimensional and dimensionless) 

% inlet flow velocity 
u(r, z), V(R, Z) normal velocity components 

(dimensional and dimensionless) 
z, z axial coordinates (dimensional and 

dimensionless). 

Greek symbols 
? thermal drffusrvtty of thud 
O(R, Z) dimensionless temperature 

distribution 
i, eigenvalues of problem (18) 
PI eigenvalues of problem (10) 
V kinematic viscosity 
7 dimensionless time. 

The transient energy equation, assuming constant 
physical properties and neglecting viscous dissipation, 
axial conduction and free convection. is taken as 

M(R, Z, z) 
dZ 

aO(R, Z, 7) 
+f’(R,Z) aR 

> 

?O(R, Z, z) 
= 

13R2 

O<R< l,Z>O. (lc) 

The boundary conditions for the velocity are given by 

U(R,O) = 1 V(R,O) = 0 

ygL0 V(rjZ) =o 

U(l,Z) = 0 V(l,Z) = 0. (2a-f) 

The initial and boundary conditions for the tem- 
perature are taken as 

O(R,Z,z)=O 7=0 

O(R,O,7)= I T>O 

x3(0, z, 7) 

iR 
=o T>O 

O(l,Z,T) = 0 7 2 0 (3ad) 

where various dimensionless groups are defined as 

R=:-; Z,+ “=;; f&tl; 
ra r, UO 

p*=P. ?=z!; @=_. T-T, 

pu; ’ rd T,, - T, ’ 
Re=y; 

Pe= RePr; Pr=i. (4) 

We split up the velocity field in the form 

U(R, Z) = U*(R, Z) + U,(R) (5a) 

where 

U,(R) = ;(l-R2). (5b) 

Introducing the velocity profiles given by equations 
(5) into the continuity, momentum and energy equa- 
tions (la-c), we obtain 

dU*(R,Z) I aVR,Z) _ o 
dZ dR (64 

(U*(R, Z) + U, (R)) 
a@( R, Z, 7) 

(7z 

+ 4R, Z) 
iiO(R, Z. 7) ?O(R, Z, 7) 

c?R = aR= (6~) 

and the inlet and boundary conditions for the velocity 
held become 

U*(R, 0) = 1 - U, (R) 

0) 
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U*(l,z) = 0 (7c) 

while the initial and boundary conditions for the tem- 
perature field remain unaltered. 

The purpose of such a splitting-up is to enhance the 
computational performance in the solution of the vel- 
ocity field. 

3. SOLUTION FOR THE VELOCITY FIELD 

The momentum and continuity equations being 
uncoupled from the energy equation, the velocity field 
can be solved separately from the temperature prob- 
lem as described below. 

First, the continuity equation (6a) is integrated over 
the duct cross section to give 

V(R, Z) = dR’. (8) 

Similarly, the momentum equation (6b) is integrated 
over the duct cross section to yield an expression for 
the pressure gradient as 

-g= 2 (U*(R,Z)+U,(R)) 
du*(R Z) dR az 

1 au*(l,z) 3 

Re dR +Re. (9) 

We now consider the following auxiliary eigenvalue 
problem : 

d2$@t, RI +pf$(p,, R) = 0 0 < R < 1 
dR2 

UOa) 

(lob) 

W-L 1) = 0 (1Oc) 
whose eigenvalues, eigenfunctions and the normaliz- 
ation integral are given, respectively, by 

& = (2i- l)n/2 (1 la) 

r!& R) = cos K R (1 lb) 

N, = 
I 

’ $‘(p,, R)dR = 112. (llc) 
0 

An integral transform pair is constructed by utilizing 
the eigenvalue problem (10) : 

U*(R,Z) = f 9 o,*(Z) inversion (12a) 
8.1 , 

q?(Z) = ___ U*(R, Z) dR transform 

(12b) 

By introducing U*(R,Z), as defined by equation 
(12a), into equations (8) and (9), we obtain 
expressions for V(R, Z) and dP*/dZ in terms of the 
transform D,*(Z) : 

V(R,Z) = F F,(R)v (13) ,=I 

do*(Z) 3 
+ i H,* + 

,=I 
+ z (14) 

where 

IL@,> R’) dR’ (154 

-3 
I 

’ RF,(R)dR. (15b) 
0 

Next, we take the integral transform of the momen- 
tum equation (6b), namely, we operate on equation 
(6b) with the operator 

s 
; r&L,, R)/Nf” dR. 

Then, in the resulting expression, we replace 
U*(R,Z), V(R,Z) and P* by their equivalent for- 
mulas (12a), (13) and (14), respectively, to yield 

kF, ,g, K4,,k + R!,k - 2E;(O)&) O,*(Z) 

d@(Z) 
+d,,(C, -E(O)H,*)I 7 

= ( 

P(0) dr/Gr 1) +6 .d 

N:12 Re dR 
r!, Re 

> 
U*(z) 

!. % 

where 

i= 1,2,...,cc (16a) 

U6b) 

dd&,, RI wu RI dR 
____ F,(R) dR 

(16~) 

3 
c,,, = ~ 2N’:lN;,2 (1 -R%P,, RN%> RI dR 

- 5 s ’ Wti,, W,(R) dR (164 
I 0 
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&=O,fori#k or&= l,fori=k. (16e) 

s 

’ 
@(Z, T) = 

I(&, R) 
~ O(R, Z, r) dR transform. 

In the above integral transform procedure, the bound- 0 M!‘Z 

ary conditions for the velocity problem are already (20b) 
utilized. Finally, when the inlet condition (7a) is trans- 
formed, we obtain 

We now take the integral transform of the energy 
equation (6c) by the application of the transform 

O*(Z)=F,(O)-E, atZ=O, i=1,2 ,..., cc 
(20b). That is, we operate on the energy equation with 
the operator 

where 

(17a) 

s 
I%,, J 

0 

E. = ytl 
s 

I 
Ii, (Rb,Hp,. R) dR. (17b) 

to obtain 

/’ 0 
%(Z, r) + Pe ’ W,, RI 

The system given by equation (16a) provides an 87 s 0 hi;'* 

/M,“* dR, 

U*(R, Z) 

infinite set of coupled ordinary differential equations 
for the transform of velocity u*(Z) subjected to the d@(R,Z,r)dR+Pe ‘I-&R) 

transformed inlet condition (17a). For computational 
+ U,(R)) az 

s 
~ UR, Z) 

,I M;‘* 
purposes, this system of equations is truncated to a 
sufficiently large order N, which can be solved by the aO(R,Z,z) 

X 
subroutine DIVPAG from the IMSL package [22]. 

Once the transformed velocity @(Z) has been 

aR dR = -J.;@(Z,r). (21) 

numerically computed, the velocity field U*(R, Z) is 
This equation contains the functions U*(R,.Z) and 

recovered by inverting o*(Z) according to the inver- 
O(R, Z, z) which are now replaced by the equivalent 

sion formula (12a). 
transforms o:(Z) and ai(Z,z), given by equations 
(12a) and (20a), respectively, to obtain 

4. SOLUTION FOR THE TEMPERATURE FIELD 

Knowing the velocity distribution, we are now in a 
position to solve the energy equation by following a + Pe f h,,(Z)aj(Z, z) = 0, i= 1,2,...,co (22a) 

methodology similar to the one presented previously. 
,=1 

We consider an auxiliary eigenvalue problem similar where 
to the one given by equations (lo), that is 

d*W, R) 
g;,(Z) = kF, ‘qdk*(Z)$.P:: (22b) 

dR= 
+LfT(i,,R) = 0 0 < R < 1 (18a) 

d@(Z) hii = f CCkdZ +s .;“t 
” Pe GQC) 

dW, 0) _ o t=, 

dR (lgb) 
and 

ryn,, 1) = 0 (18~) 
4 = 

1 

which has eigenvalues, eigenfunctions and the nor- 
M’/*M’/*j,,‘/l 

1 / k 

malization integral given, respectively, as I 

X 

i, = (2i- l)n/2 (19a) 
c 

r(n,,R)r(n,,R)~(~,,R)dR (224 
0 

r&R) = cos L,R (19b) a,- R'l-(i;,R)T(A,,R) dR 1 
M, = i I-‘(&, R) dR = ;. (19c) (22e) 

JO 
1 

s 

1 

Based on this eigenvalue problem, we define the fol- 
C,:, = M”ZM”’ I(,$, R)I-(&Zi, R)F,(R) dR. 

1 IO 
lowing integral transform pair : 

Gw 

O(R,Z,z)= zg =+(Z,r) inversion (20~) The system (22) provides an infinite number of 
coupled first-order partial differential equations for 
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Table 1. Convergence of the dimensionless axial velocity at the duct centerline for different truncation orders N 

U/U, at R = 0 

x+ N= 10 N=20 N= 30 N = 40 N= 50 
Shah and 
Bhatti [2] 

6.250 x lo-’ 1.0374 1.0480 1.0499 1.0509 1.0514 1.0615 
1.250 x 1O-4 1.0637 1.0699 1.0717 1.0725 1.0728 1.0751 
2.500 x 1O-4 1.0957 1.1004 1.1016 1.1022 1.1025 1.1013 
3.750 x 1o-4 1.1191 1.1232 1.1242 1.1247 1.1249 1.1244 
5.000 x lo-4 1.1386 I 1422 1.1430 1.1433 1.1435 1.1443 
6.250 x 1O-4 1.1557 1.1588 1.1594 1.1597 1.1599 1.1615 
7.500 x low 1.1710 1.1737 1.1742 1.1745 1.1745 1.1767 
1.000 x 1o-3 1.1979 1.1999 1.2002 1.2004 1.2004 1.2031 
1.250 x lo-’ 1.2214 1.2228 1.2230 1.2231 1.2231 1.2259 
1.500x 10 i 1.2424 1.2434 1.2435 1.2436 1.2436 1.2463 
1.750 x lo-3 1.2616 1.2623 1.2623 1.2623 1.2623 1.2648 
2.000 x 1om3 1.2792 1.2797 1.2796 1.2796 1.2796 1.2818 
2.500 x lo-’ 1.3109 1.3108 1.3107 1.3106 1.3106 1.3121 
3.125 x lo-’ 1.3444 1.3440 1.3437 1.3436 1.3436 1.3441 
3.750 x lo-’ 1.3722 1.3715 1.3712 1.3711 1.3711 1.3707 
5.000 x lo-3 1.4139 1.4130 1.3126 1.4124 1.4124 1.4111 
6.250 x lo-’ 1.4419 1.4411 1.4407 I .4405 1.4405 1.4388 
9.375 x lo-’ 1.4781 1.4776 I .4774 1.4771 1.4771 1.4758 
1.250x lo-* 1.4916 1.4914 1.4913 1.4911 1.4911 1.4903 
6.250 x lO-2 1.4999 1.4999 1.4999 I .4999 1.4999 1.4999 

the transform of temperature @(Z, z) subjected to the where 
transformed initial and inlet conditions : 

@(Z,O)=O z>o (W 
(2% d) 

where 

G,(O, z) = f; z > 0 
and 

(23b) 
the superscript n+ 1 denotes evaluation at an 

mtermediate time between n and n + 1. 
This system is solved by marching along Z and t up 

to a final time and axial position and obtaining the 

j:= 
s 

’ W, RI - dR. 
transform of temperature a,(Z,z). Once the trans- 

0 IV;‘2 (23c) form @,(Z, z) is available, the temperature O(R, Z, z) 
is determined by utilizing the inversion formula (20a). 

The infinite system (22) is now solved by finite- 
differences after truncating with a sufficiently large- 
order N. Using a second-order accurate explicit finite- 
difference based on an extension of the Warming and 
Beam [23] upwind scheme, system (22) becomes : 

Predictor : 

- 
@T’ = Q,-Pei 2 gi,k(Ok,,-@,_.,) 

k=l 

- Pe AZ 2 h,,k@,, (24a) 
k=l 

Corrector : 

_Pe( 5 gyk(@k,j-2@,j-1 +@,1-2) 
k=l 0’ 8 I s 

012 0!4 0!6 0.8 
- 

- Pe AL\Z 2 h,jk@k,T ’ 1 (24b) FIG. 1. Velocity profile at differznnt cross sections of the flat 
k=l duct. 
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The stability analysis of this finite difference 
scheme, presented in the appendix, leads to the fol- 
lowing stability criterion : 

O<y,<2, i=1,2 ,..., N (244 

where yi = C,AT/AZ is the Courant number. 
Knowing the dimensionless temperature O(R, Z, zj, 

the fluid bulk temperature O,,(Z, z) can be evaluated 
from its definition : 

O,,(Z, 7) = 1 
s Urn(Z) 0 

U(R, Z)O(R, Z, z) dR (25a) 

where 

a/ 

CTm(Z) = J C’(R, Z) dR Wb) 
0 

is the average longitudinal velocity : 
Also of interest is the local Nusselt number defined 

as 

Nu(Z, t) = 
4%( 1, z, z)/aR 

@(LZz)-@,“(Z~) 

-4ao(i, z, 7yaR = 
@,“(Z, T) 

(26) 

since O( 1, Z, 7) = 0. However, for computational pur- 
poses, it is more convenient to express 0 in terms of 
its transform, according to the inversion formula 
(20a), to obtain 

-4 N aryn,, i)jaR _ 
Nu(Z, z) = - c WZ) i= 1 Iv,“2 

wz, 7). (27) 

Since the transform is available from the solution of 
the system (24), the local Nusselt number is readily 
evaluated from equation (27). 

5. RESULTS AND DISCUSSION 

We now present numerical results for the fluid bulk 
temperature and Nusselt number at different times 
along the channel. In order to allow comparisons with 
results available in the literature, the dimensionless 
axial coordinate is taken as X+ = ctz/u&. We con- 
sider two values for the Prandtl number, Pr = 0.72 
and Pr = 10, and the solution of the systems (16a) 
and (22a) is obtained with N < 50 to observe the 
convergence behavior. 

In the numerical solution of system (22a), the 
largest eigenvalue of the coefficient matrix was 
observed to vary slightly with time and position. As 
the difference is after the fourth decimal place, its 
effect on the Courant number is negligible. For com- 
putations, the Courant number was maintained as 
0.93, which greatly reduced the dispersive errors 
associated with second-order accurate finite-differ- 
ences schemes. These small oscillations right after the 
discontinuity are not represented in the figures, since 
they are by no means relevant to the conclusions that 
follow. 

0.6 
c 
6 
_, 
Q 

0.4 

J. 

Xf 

l- 
(b) Pr=lO 

r=Sxlrr3 

0.6~ 
steady-state 

\ 
P 7 = 2 x IO-2 

hi - / 

@@ 

a 
7=3x10-3 

0.4- \ T = I x 10-2 

T i I x 10-3 

0.2 

0 
1o-5 1o-4 1o-3 0.01 0.1 

Xf 

FIG. 2. Fluid bulk temperature at different times for develop- 
ing flow inside a parallel-plate channel for (a) Pr = 0.72, 

(b) Pr = 10. 

Table 1 illustrates the convergence behaviour of the 
dimensionless axial velocity at the duct centerline for 
different truncation orders N. Clearly, convergence is 
achieved with a reasonably small number of terms in 
the series expansion, and requires an increasing N as 
X+ decreases. Such results provide accurate pre- 
dictions when compared with the purely numerical 
results presented by Shah and Bhatti [2]. The vari- 
ations of the velocity profile at different cross sections 
of the flat duct are shown in Fig. 1. For the tem- 
perature field, convergence is achieved with four sig- 
nificant digits for X+ 2 10m3 with N < 40. As X+ is 
decreased, an increasing number of terms is again 
required. 
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0.8 

0.6- 

c 
3 - = 
8 

r 3 x 10-3 

0.4- 

0.2. 

r 
-.. 

\ 

I 
:I 
:I 

I 

--1 

FIG. 3. Comparison of the fluid bulk temperature at different 
times for slug flow, simultaneously developing flow and 

parabolic flow. 

For slug flow, it is well known that the fluid bulk 
temperature distribution is divided in two distinct 
regions, separated by a sharp wave front : (1) a ther- 
mally unaffected region, defined by X+ > Ur, where 
the fluid has not been disturbed by the thermal wave 
front and therefore obeys the initial condition ; (2) a 
thermally affected region, defined by X+ < Liz, where 
the fluid has already been disturbed by the thermal 
wave front and therefore obeys the inlet condition 
imposed by the step jump. However, for a non-slug 
flow, these two extreme regions are separated by an 
intermediate region that branches out of the curve 
for steady-state, as the front advances [24]. In this 
intermediate region, the faster fluid that obeys the 
inlet condition interacts with the slower fluid close to 
the walls, which still obeys the initial condition. These 
three regions can be identified in Figs. 2(a) and 2(b), 
which show the fluid bulk temperature plotted as a 
function of the axial coordinate X+ at different times 
T for Pr = 0.72 and Pr = 10, respectively. 

Figure 3 shows a comparison of the fluid bulk tem- 
perature distribution as a function of time for slug 
flow, simultaneously developing flow and parabolic 
flow. It is seen that the transient behavior of the 
developing flow situation is encapsulated by the other 
two types of flow and the intermediate region is more 
pronounced for parabolic flow. 

Figures 4(a) and 4(b) show the local Nusselt num- 
ber distribution as a function of axial distance and 
time for Pr = 0.72 and Pr = 10, respectively. The local 
Nusselt number decreases as the Prandtl number 
increases, as expected, since the slug flow situation 
(Pr + 0) is the upper limit for the Nusselt number 
distribution in simultaneously developing flow, 
whereas the fully developed flow situation (Pr -+ co) 

150 
(a) R=0.72 

T = I x 10-j 

t = 2 x lo-’ 

1=3x10-3 

~~ 

r = 5 x 10-3 

T = I x 10-2 
1=2x10-2 

WadY-s~e 

Fm. 4. Local Nusselt number distribution at different times 
for (a) Pr = 0.72, (b) Pr = 10. 

is the lower limit. As far as the propagation of the 
thermal wave is concerned, it is seen that the thermal 
front in simultaneously developing flow advances 
slower for increasing Pr, and the observations dis- 
cussed previously for the fluid bulk temperature can be 
repeated, except that the thermal wave front indicates 
that the intermediate region extends farther down- 
stream, although not as pronounced as for the case of 
fully developed flow [24]. 
Acknowledgement-One of the authors, R. 0. C. Guedes, 
wishes to acknowledge the financial support provided by 
CNPq from Brazil. 
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APPENDIX 

Stability analysis 
For the purpose of stability analysis, we consider matrices 

G and H constant in equation (22a). This equation, in the 
matrix form, then becomes 

am, 4 
a7 

+ G aYe, 4 
az+Hy(Z,~) =O (Al) 

where 

y(Z,r) = (@,(Z,T),@@, T), ,a,(Z, T))‘. (A2) 

Next, we define 

x=s-‘y (A3) 

u here 

S-‘HS=K (A4) 

SS’ =I (A5) 

and K is the diagonal matrix containing the eigenvalues of 
H, and I is the identity matrix. Then, replacing y by Sx in 
equation (Al) and multiplying by S- ’ : 

s-,s wz 7) +S-jGS w-z4 
a7 az +S-‘HSx(Z,r) = 0 

or, after substituting for equations (A4) and (A5), 

aw, 7) -+S-‘GS%$)+Kx(Z,r)=O. a7 (A7) 

We define 

Q=S-‘GS (A8) 

and rewrite equation (A7) as 

%+i: Q,,$!+k,.a=O; i= 1,2,..,N 
,=1 

where k,, is the ith eigenvalue of H. 
The following change of variables is then defined 

x: = exp (k,, 7)x, 

which introduced in equation (A9) yields 

z + 5 Q, exp [ - (k,, - k,,)r] $$ = 0. (All) 
,= I 

646) 

(A9) 

(AlO) 

Finally, we define Q$ = Qvexp [-(k,,- kn)r] and substitute 
this expression in (Al 1) to obtain 

(A121 

Warming and Beam [23] studied the stability of the upwind 
scheme applied to a model equation similar to equation 
(A12). In their analysis, the coefficients matrix Q was 
assumed constant in order to apply linear stability theory. 
Then, by applying a Von Neumann type stability analysis, 
they showed that the upwind scheme is stable if and only if 

O<r,&l<2, and c,>O for i=l,2 ,..., N (A13) 

where c, are the eigenvalues of Q*. 
It should be noted, however, that, in the case studied here, 

matrices G and H are Z-dependent and matrix Cl* is r- 
dependent and, consequently, the eigenvalues ci vary with Z 
and r as well. Although not directly applicable, we apply 
here the linear stability analysis and select the largest 
eigenvalue for the estimation of the Courant number. 


